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The problem of satellite motion acted on by tangential acceleration generated by a low 

thrust engine was solved in [l to 71. N umarical solutions show [8], that the tangential 

control through the engfne thrust approximates closely the solution of the problem of the 

optimal boost for a satellite. 

We present here an asymptotic calculation of the influence of a amal tangential 

acceleration on the motion of a satellite, using the method of averaging [9]. In section 1 

we present a solation in the first approximation, valid for any elliptical orbit. In section 2, 

we show a solution in the second approximation for the case of circular orbits. 

f. The system of equations for a plane motion of a sateIlite acted on by the tangential 

acceleration f, has the form 

dZ 
dt= 2a cos u f 26 sin u + e2 

(1.1) 

da 
LB 

2j JQqa + cu.9 u) db -CC= Zf l/p (h + sin u) 

dt VF r/l 
, 

jZacosu+Zbsinu+@ ~0 JfF jff+&zcos_w+Zbsinu+e” 

Here ~1 is the gravitational constant, 2 is the major semiaxfs of the escalating ellipse, 

tl is the central angle between the position of the satellite and a certain fixed direction, 

p=Z(l- e r) is the focal parameter; the variables a and b are connected with the eccen- 

tricity of the orbit c and with the angular orientation of the perigee 6 through the formnlaa 

er = a2 $- br, tan u = ba-1 

We shall assume the small parameter to be a = j~r‘$-l, which is the ratio of the rate 

of change of the thrust to the gravitational acceleration at some characteristic height r, . 

Let us introduce the dimensionless major samiaxis z and the dimensionless time of motfon 

r = t u’&-Q, z = zrr-’ 

Then, the system (1.1) is reduced to the standard systom with a fast rotating phase 
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dz 2EZ3’” 
vl+ 2n cos u + Zb sin u + t?, 

dU (1+oeosu+bsinz# 

lz=Jfn dz= [z (1 - er)J’!* 

(la 2E(a+cosu) l/2(1-ee”) t db 213 (b + sin 24) vz (1 - er) 

dz=---P- 1/1+ZacoG$-2bsinu+e2 == ‘t/i+2 acosu+2bsinu+e~ 
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(1.2) 

In subsequent calculations we shall consider in the first place, that the ratio of the 

rate of change of the thrust to the gravitational acceleration is small over the whole in- 

terval of motion, and of the order of O( e ) , where e < 1, and secondly, that. at any instant 
of time, the unperturbed motion (when E = 0) is periodic. The fiat condition limits the 

magnitude of thrust and the focal radius of the orbit (r % rl), while the second condition is 
equivalent to the inequality e < 1 being rigorously fulfilled. 

It has been shown in [6] that the system (1.2) has no singularities when O,< e < I, 

and that it can be solved using the method of averaging. The variables z, a and b in the 
system (1.2) are slowly varying functions of time, while the function a undergoes fast 
variation. Averaging the right-hand aides of the system (1.2) over a period of unperturbed 
(Kepplerian) motion T = Mz3”, we obtain a system of equations in the first approximation 

da 

ciz- 
4&o JG (1 - e2) 

nea [E(e)-_(e)], $ = 2 ez”‘*E (e) 

db 4eb f/z( 1- et) 
(1.3) 

dt= sea IE (e) - K (e)I 

Hare K (e) and E (e) are complete elliptic integrals of the first and second kind 
respectively, whose mod&i are equal to the eccentricity of the orbit [IO]. 

The solution of (1.3) approximates the exact solution of (1.2) with an error c a !I’ 

in the interval Z-E?. First integrals the system (1.3) are 

abo = sob, 
K (e0) - E (e0) 

zxzo K(e)--E(e) (1.4) 

Here and in the following zero subscript denotes the initial values of the functions. 

When e f 0 we can speak of the angular orientation of the line of apses and in this 
case we have from (I.4), that in the first approximation with respect to e the tangential 
acceleration does not change the ungnlar orientation of the line of apses. It is easy to 
show that K (e) >, E (a) and the equality sign occars only when e ~0. Consequently by 
(1.3) and (1.4) the major semi-axis of the osculating ellipse increases monotonely and the 
eccentricity decreases. Determination of the time of motion and the number of rotations of 
satellite can be reduced to quadratnres 

e 
II 

s 

ede 

‘“4e I/ro[K (CO)--E(eo)d_(i-eB) 1/K--.E 
-g 

e 
1 

8ezo2 [K (eo) - f!J (s)la s 

* e(K--E) de 
1 - e2 

6, 

In the csse of orbits possessing small or large eccentricities the integrals (I.5) can 
be calcnlated from the known expansions of complete elliptic integrals into series with 
respect to the modulus or to an auxiliary modulus. For small eccentricities we find from 

(1.4) and (1.5) 
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The first terms of the expansion (1.6) were found previously by a number of authors 

(see for example [ 11). W e can investigate similarly the motion of a satellite with a slowly 

varying thrust. In this case it is sufficient to change in (1.5) the time-scale and the solu- 
tions (1.4) will remain valid. 

2. When e = 0 then the averaged system (1.3) has the ‘null’ solution, a so called spiral 
trajectory, along which the eccentricity remains constant and the major semi-axis increases 
monotonely 

e = 0, z = zo (1 - 4EZ 1/z;)-, 
(2. X) 

From (2.1) we can conclude, that if the initial eccentricity eqnals,or is nearly equal 
to zero then the exact solution for the eccentricity found by integrating the system (1.2), 
is a function of 7, of the order - 0 (E) over the interval z - a-l. For a more detailed 
description of the evolution of the orbit, higher approximations are needed. The constmc- 
tion of a system in the second approximation is, for the general case, quite complicated, 

consequently we shall limit ourselves only to circular orbits. Let us introduce the new 

variable L 

(2.2) 

L = 2 tan-l 

Expanding (2.2) into series in a and b, we obtain 

u=Lf2asinL-2bCOSL-+O(~) 

In this way, in the case of circular orbits when a = b =O,the angle L coincides with 

the angle of latitude u. 

Differentiating the system (2.2) and using (1.2), we find 

(2.3) 

dL ab’ -bbd 
ZCZ 

-‘h + 2e(1-- es) 1/i (a sin u - b cos u) 

1+61--- (1+oGOsu+bsinu) y’l+Zacosu+Z%sinu+e~ 

Assuming that the initial eccentricity is small I e, - 0 (e), we expand the right-hand 
sides of (1.2) and (1.3) into a series with respect to e; neglecting the infinitesimals of 
the third order we obtain 

(2.4) 

dz 
x - 2ea%[I+acosL+bsinLJ, 

da 
x-8 T/ipcosL-a+ acos2Lfbsin2Ll 

db 
--e l/~[2sinL-b+asin2L-bcos2L], 
ds ‘& = /h--e y’;jasinL-bcosL) 

Let us now perform the standard substitution of variablea in the system (2.4) 
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z==Iw-ez~+e%a+..., b=B+Eb1-t8%,+... 
n=A+~a,f~%,+..., L=~~+EL~+E%~+... (2.5) 

Here Sir al, 01,Lr . . . are some functions of D, A, B and V. An algorithm for their 
determination is given in [9]. The functions D, A, B and q in the first approximation satisfy 
the system 

which on integration gives 

For the functions zX , a,, b, and L1 we shall assume that the zero harmonics with 

respect tog,, is absent, and using the general formulas for the determination of the fanctions 

q, aI b, and L, (see !91), we shall obtain the formulas for the small-period perturbations 
of the elements of the orbit 

21 = L1 = 0, aI = 202 sincp, b, = - 2D= cosq (2.6) 

To find the solution in the second approximation we shall aolve the averaged system 

(2.7) 

with the initial conditions 

D = z,, A = a0 - Eel,, 3 = b, - @Jx*v cp = &8 (2.8) 

The eolntion of the system (2.7) has the form 

A=F (+))*‘*, B= c (s)’ 

F=aO- 2~2~~ sin ~0, G=bo+2ezogcosh 

Going back to the original variables we obtain 

e = z. (i - he7 JG$-* 

a=F $- ( 1 ‘k + 2&sin 
I 

u. + s] 

(2.9) 

(2.10) 

(2.11) 

+ 2bocosu0-22”osinus 
(2.12) 

The solution (2.9) to (2.12) approximates the exact solntivn of the system (1.2) with 
the aocaracy N din the interval of time 7 - 8-1, if .rs - 0 (a). 

From (2.9) it follows, that under the action of tangential acceleration the major semi- 
axis of the orbit ia increases monotonely. The expressions for u and b have two tsrraa aachr 
the first term in each expression is 8 monotonely dscreaaing in absolute vakne fnactfon of 
time, while the second term oscillates with the frequency of the orbiti mvtivn of the 
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satellite. the amplitude of these oscillations monotonely increasing. 

To investigate the evolution of the eccentricity of the orbit, we shall introduce the 

quantity E which is the mean value of the square of eccentricity over the period of one 

revolution of the satellite about a planet. Ry (2.10) and (2.11) we have 

E = zez-l (fl + G2) + 4Eaz4 (2.13) 

In the phase plane a, b the soIutions (2.10) 

and (2.11) give a parametric representation of the 

hodograph of the normalized Laplace vector (i.e. 

of the Laplace vector divided by p). Its modulus 

equals the eccentricity of the orbit, and the angle 

with the o-axis equals the angular distance of the 

perigee (I. The hodograph curve is a spiral with 

a slowly varying radius of curvature. When the 

value of z is fixed, the equations (2.10) and (2.11) 

trace a circle of radius 2~22 , the coordinates of 

its center beiug Fzo ‘11 z -‘,Z, Gzo’/z,- ‘iz. As the time 
increases, the center of the circle moves toward 

the origin and its radius increases. 

Two turns of the hodograph curve are shown in the Figure, where u’ = f@o, and 
6’ = 10%. These curves were obtained from the solution of the system (1.2) with the 

initial conditions a, = 0, be = 0.3 x 1O’3, ~(o = 0, z0 = I, and E = 0.9 x 10V3 when rt = 3. 

The smaller circle corresponds to the initial motion, the larger one corresponds to the 

interval of time 2038 < T< 2050, and values of the angle u over the interval (0 - 27~) 

are marked on them. The arrows indicate the direction of motion of the Laplace vector. 

At sufficiently small values of z, when the condition b = Gz-“~z/‘~ - 

2ezZ cos u > 0, is satisfied, the hodograph lies in the upper half-plane, the line of apses 

performs oscillatory motions and the value of eccentricity oscillates about a certain mean 

value. As z increases, the amplitude of vibrations of the line of apses increases although 

remaining smaller than 77, and the mean value of tbe square of eccentricity monotonely 

increases. At the instant when the hodograph becomes tangent to the u’-axis, the eccentri- 

city of the orbit becomes zero and the direction of the Laplace vector assumes the value 

77 in a discontinuous manner. The line of apses rotates with the same frequency as the 

satellite. At large values of t the eccentricity monotonely increases (e- &zr), the 

phase angle of the rotation of the line of apses differs by %n from the phase of the central 

angle II ; and in this case tan 0 J - cotu. The motion of the satellite occurs in such a way, 

that it is always on a line perpendicular to the direction of the Laplace vector of the 

osculating ellipse. 

From (2.9) to (2.1.11, we find the expression for the focal radius of the satellite 

r=z-1/ G (F cos u + G sin u) (2.14) 

Let us investigate the positions of a satellite at which the focal radius becomes 

maximum or minimum. They correspond to the apogee and perigee of the osculating ellipse. 

From the condition &j& = 0 we find the equation determining the value of a, which 

correspond to the extremal positions 

2eza + J&& (F sin u - G cos u) = 0 (2.15) 
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Solations of (2.15) 

2EZ% 
u = f cos-* I/Z0 (F” + @) - cos (2.16) 

exist, if 

2sz6’* < I/z0 (F” -+ cy (2.17) 

The plus sign in (2.16) corresponds to the perigee, while the minus sign to the apogee 

of the orbit. The condition (2.17) is equivalent to the geometric condition that the origin 

shoaid be inside the hodograph curve. With the hodograph of the Laplace vector given, we 

can easily find the extrema geometrically. To do that we draw from the origin two lines 

tangent to the hodograph carve (on the figure they are the lines OM and ON). Since the 

angles u and o are equal, it follows that the angular distance of the perigee eqaals the 

angle 00 ‘M, and that of the apogee, 00 ‘N. 

As z increases the amplitude of the vibrations of the radius decreases. The angle 

NO ‘M between the apogee and perigee decreases and e = 0 it becomes zero. If the origin 

is inside the hodograph then the radias increases monotonely. 

The condition (2.17) can be written as 

4Pf sin (u - a) < pe (2.18) 

From (2.18) it follows, that if the ratio of the rate of change of thrust of the engine to 

the local gravitational acceleration is leas than e/4, then the line of apses performs vibra- 

tory motions. At larger valaes of the pertarbing acceleration, the line of apses rotates and 

the radias increases monotonely. The quantity E is, in general, not a monotonic function 

of time. Differentiating (2.13) with respect to I, we find that E decreases if 

4~2~ < z,,‘/%-‘/~ v Fa _t Ga (2.19) 

(geometrically it means, that the diameter of the circle traced by the hodograph of the 

Laplace vector is smaller than the distance between the center of the circle and the origin). 

The mean value of the sqaare of eccentricity increases when the condition (2.19) is violated. 

In particular, if the initial orbit is a circle (oa = be = 0) then the elements E , u and r in- 

crease monotonefy on the whole of the trajectory. 

The approximate formulas obtained for the variations of the elements of the orbit, 

approximate the exact solution very closely. We present here some reealts of compota- 

tions. The system (1.2) with initial conditions from the above example was solved nameri- 

tally. It was fonnd that when T= 4255.086, z = 3.02994, e = 0.0021122 and u = 2227.687, 

whereas the formulas (2.9) to (2.12) resulted in I = 3.02993, e = 0.0021126 and I = 2227,687, 

1. 

2. 

The solution (2.14) for the focal radias was also obtained in [2] by another method, 

The aathor expresses his gratitude to N.N. Moiseev for the interest in thia work. 
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